

Aromatic polyamides and polyimides bearing bulky ether pendent groups derived from 1-aryloxy-2,4-diaminobenzenes

Ioakim K. Spiliopoulos and John A. Mikroyannidis*

Chemical Technology Laboratory, Department of Chemistry, University of Patras, GR-26500 Patras, Greece

(Received 21 December 1995)

Two new diamines, 1-(1-naphthoxy)-2,4-diaminobenzene and 1-(biphenylyl-4-oxy)-2,4-diaminobenzene. were synthesized and used for the preparation of modified polyamides and polyimides bearing bulky ether groups. Their properties were compared with those of the corresponding unmodified polymers. Characterization of polymers was accomplished by inherent viscosity measurements, Fourier transform infra-red, ¹H nuclear magnetic resonance, X-ray, differential thermal and thermomechanical, thermogravimetric and isothermal gravimetric analyses. The modified polyamides and polyimides showed considerably higher solubility than analogous unsubstituted polymers and dissolved in polar aprotic solvents and certain inorganic acids upon heating or even at room temperature in some cases. The incorporation of the ether groups along the polymer backbone decreased the glass transition temperatures, which ranged from 110 to 195°C. In addition, certain modified polymers softened at the region 190–273°C. The modified polymers were more thermally stable than the parent counterparts, being stable up to 350–404°C and affording char yields of 59–70% at 800°C in N₂. Copyright © 1996 Elsevier Science Ltd.

(Keywords: polyamides; polyimides; modification)

INTRODUCTION

Aromatic polyamides and polyimides have already been noted for their high temperature resistance and excellent mechanical properties¹. They are also known as difficult processable materials due to their high glass transition (T_g) and softening (T_s) temperatures. The second problem arising for these polymers is their limited solubility in common organic solvents.

Since the above described problems restrict the further applications of the aromatic polyamides and polyimides, considerable effort has been made to improve their properties by structural modification. One of the approaches to increasing solubility and lowering T_g and T_s is the incorporation of bulky pendent groups along the polymer backbone. Many polymers such as polyterephthalamides², polyisophthalamides^{3,4}, polyterephthalates⁵, polyimides⁶ and other polyheterocycles⁷ have been structurally modified by polymerization or copolymerization of monomers containing bulky pendent groups. In addition, polyamides with phenoxy^{8,9} and phenylthio^{9,10} groups have been reported.

Recently we have reported the synthesis of aromatic polyamides and polyimides with benzoxazole or benzothiazole¹¹, *N*-benzylidene¹², phthalimide¹³, fura-mido¹⁴, ester¹⁵ and amide¹⁶ pendent groups.

The present work deals with the synthesis and characterization of polyamides and polyimides with ether pendent groups. The well known thermally stable and flexible ether bond is expected to provide desired properties to the substituted polymers. Properties such as thermal stability, solubility, T_g and T_s attracted the main interest.

EXPERIMENTAL

Characterization methods

Melting temperatures were determined on an electrothermal melting point apparatus IA6304 and are uncorrected. Fourier-transform infra-red (FT i.r.) spectra were recorded on a Perkin-Elmer 16PC FT i.r. spectrometer with KBr pellets. Nuclear magnetic resonance (¹H-n.m.r.) spectra were obtained using a Varian T-60A spectrometer at 60 MHz. Chemical shifts (δ values) are given in ppm with tetramethylsilane as an internal standard. Differential thermal analysis (d.t.a.) and thermogravimetric analysis (t.g.a.) were performed on a DuPont 990 thermal analyser. D.t.a. measurements were made using a high temperature (1200°C) cell at a heating rate of 20°C min⁻¹ in N₂ atmosphere at a flow rate of 60 cm³ min⁻¹ and with a ΔT sensitivity of 0.5° C in⁻¹. Dynamic t.g.a. measurements were made at a heating rate of 20°C min⁻¹ in atmospheres of N₂ or air at a flow rate of 60 cm³ min⁻¹. Thermomechanical analysis (t.m.a.) was recorded on a DuPont 943 t.m.a. using a loaded penetration probe at a scan rate of 20° C min⁻¹ in N₂ with a flow rate of $60 \text{ cm}^3 \text{ min}^{-1}$. The t.m.a. experiments were conducted in duplicate. The t.m.a. specimens were pellets of 8 mm diameter and 2 mm

^{*} To whom correspondence should be addressed

thickness prepared by pressing powder of polymer for $3 \min$ under 5–7 kpsi at ambient temperature. The inherent viscosities of polymers were determined for solutions of 0.5 g/100 ml in *N*,*N*-dimethylacetamide (DMAc) at 30° C using an Ubbelohde suspended level viscometer. Elemental analyses were carried out with a Hewlett-Packard model 185 analyser. The wide angle X-ray diffraction (WAXD) patterns were obtained for powder specimens on a X-ray PW-1840 Philips diffractometer.

To determine the equilibrium water absorption, polymer samples were previously conditioned at 120° C in an oven for 12 h. They were subsequently placed in a desiccator where 65% relative humidity (r.h.) was maintained by means of an oversaturated aqueous solution of NaNO₂ at 20° C, and were periodically weighed.

Reagents and solvents

1-Chloro-2,4-dinitrobenzene, 1-naphthol and biphenyl-4-ol were recrystallized from methanol, distilled water, and ethanol 50%, respectively. Terephthaloyl chloride was recrystallized from *n*-hexane. Pyromellitic dianhydride (PMDA) and benzophenonetetracarboxylic dianhydride (BTDA) were recrystallized from acetic anhydride. Triethylamine and dimethylacetamide (DMAc) were dried by distillation over KOH and CaH₂, respectively.

Preparation of starting materials (Scheme 1)

1-(1-Naphthoxy)-2,4-diaminobenzene (DA1). 1-Chloro-2,4-dinitrobenzene (4.4561 g, 22.0 mmol) was added to a solution of 1-naphthol (3.7440 g, 26.0 mmol) and potassium hydroxide (1.4028 g, 25.0 mmol) in ethanol 95% (20 ml). The mixture was refluxed overnight. Next it was poured into water and stirred for about 30 min. The yellow solid precipitate was filtered off, washed with water and dried to afford DN₁ (6.69 g, 85%). It was purified by recrystallization from a mixture of CH₃CN/EtOH (1:1 v/v). M.p. 124–128°C. Anal. Caled. for $C_{16}H_{10}N_2O_5$: C, 61.94%; H, 3.25%; N, 9.03%. Found: C, 61.72%; H, 3.29%; N, 10.08%. I.r. (KBr, cm⁻¹): 1608 (aromatic); 1534, 1346 (NO₂); 1480 (aromatic); 1388 (naphthyl ring); 1268 (C-O-C). ¹H n.m.r. (DMSO-d₆) δ : 8.47 (s, 1H, aromatic of position 3 of dinitrobenzene ring); 7.77-7.22 (m, 7H, aromatic of positions 5 and 6 of dinitrobenzene ring and of positions 4, 5, 6, 7 and 8 of naphthyl segment); 6.78-6.63 (m, 2H, aromatic of positions 2 and 3 of naphthyl segment).

Scheme 1

A hydrogenation flask was charged with a mixture of compound DN_1 (2.30 g, 7.4 mmol), ethanol 95% (15 ml) and a catalytic amount of 10% palladium on activated carbon. The hydrogenation was carried out on a Parr apparatus under a pressure of about 2 atm at ambient temperature until no more hydrogen was taken up (ca. 5h). The solid gradually dissolved during hydrogenation. The catalyst was removed by filtration and the solution was concentrated in a rotary evaporator and poured into water. The brown solid precipitate was filtered off, washed with water and dried to afford DA₁ (1.75 g, 95%). A purified sample was obtained by recrystallization from a mixture of toluene/CHCl₃ (2:1 v/v). M.p. 76–79°C. Anal. Calcd. for C₁₆H₁₄N₂O: 76.78%; H, 5.64%; N, 11.19%. Found: C, 76.55%; H. C 5.58%; N, 11.32%. I.r. (KBr, cm⁻¹): 3356-3220 (N-H stretching); 1620 (N-H deformation); 1596, 1506, 1460 (aromatic); 1392 (naphthyl ring); 1260 (C-N stretching); 1218 (C-O-C). ¹H n.m.r. (DMSO-d₆) δ : 7.80–7.27 (m, 7H, aromatic of naphthyl segment); 6.53-6.38 (m, 2H, aromatic of positions 5 and 6 of 1,3-phenylenediamine ring); 6.00 (s, 1H, aromatic of position 3 of 1,3-phenylenediamine ring); 4.47 (br, 4H, NH₂).

I-(*Biphenylyl-4-oxy*)-2,4-*dinitrobenzene* (DA₂). Compound DN₂ was obtained as a yellow solid in 62% yield (4.82 g) by reacting 1-chloro-2,4-dinitrobenzene (4.6589 g, 23.0 mmol) with a solution of biphenyl-4-ol (5.1000 g, 30.0 mmol) and potassium hydroxide (1.4028 g, 25.0 mmol) in ethanol 95% (20 ml) according to the procedure described for DN₁. It was recrystallized from a mixture of CH₃CN/MeOH (1:4 v/v). M.p. 112 115°C. Anal. Calcd. for C₁₈H₁₂N₂O₅: C. 64.29%; H. 3.60%; N, 8.33%. Found: C. 64.13%; H. 3.54%; N, 8.22%. I.r. (KBr, cm⁻¹): 1610 (aromatic): 1522, 1342 (NO₂): 1482 (aromatic); 1246 (C–O–C). ¹H n.m.r. (DMSO-d₆) δ : 8.57 (s, 1H, aromatic of position 3 of 1,3-dinitrobenzene ring); 8.03–6.90 (m, 11H, other aromatic).

Compound DN₂ was catalytically hydrogenated in ethanol 95% on a Parr apparatus according to the procedure described for DA1. The catalyst was removed by filtering the hot reaction mixture, because the product precipitated at the end of hydrogenation. DA2 was obtained as a brown solid in 94% yield (1.73g) and it was recrystallized from a mixture of EtOH/water (2:1 v/v). M.p. 135–137°C. Anal. Calcd. for $C_{18}H_{16}N_2O$: C, 78.24%; H, 5.84%; N, 10.14%. Found: C, 77.97%; H. 5.75%; N, 10.26%. I.r. (KBr, cm⁻¹): 3422-3342 (N-H stretching); 1620 (N-H deformation and aromatic); 1510. 1484 (aromatic); 1220 (C-N stretching and C-O-C). ¹H n.m.r. (DMSO-d₆) δ : 7.60–7.25 (m, 5H, aromatic of positions 2', 3',4', 5' and 6' of biphenyl segment); 6.93 (s, 2H, aromatic of positions 2 and 6 of biphenyl segment); 6.80 (s, 2H, aromatic of positions 3 and 5 of biphenyl segment); 6.72 (s, 1H, aromatic of position 6 of 1,3-phenylenediamine ring); 6.64 (s, 1H, aromatic of position 5 of 1,3-phenylenediamine ring); 6.07 (s, 1H, aromatic of position 3 of 1,3-phenylenediamine ring); 4.50 (br, 4H, NH₂).

Preparation of polymers (Scheme 2)

A typical procedure for the preparation of polyamide PA_1 is as follows: A flask equipped with magnetic stirrer was charged with a solution of DA_1 (0.8000 g, 3.2 mmol)

Scheme 2

and triethylamine (0.6476 g, 6.4 mmol) in DMAc (7 ml). Terephthaloyl chloride (0.6479 g, 3.2 mmol) dissolved in DMAc (5 ml) was added dropwise to stirred solution at -10° C under N₂. Stirring of the mixture was continued at room temperature in a stream of N₂ for 4h. It was subsequently poured into water and the brown solid precipitate was filtered off, washed with water then with acetone and dried to afford PA₁.

A typical procedure for the preparation of polyimide PIP₁ is as follows: Granual PMDA (0.6540 g, 3.0 mmol) was added to a stirred solution of DA₁ (0.8280 g, 3.0 mmol) in DMAc (10 ml) at 0°C. The solution became viscous, and stirring was continued at room temperature for 3 h under N₂. Acetic anhydride (5 ml) and fused sodium acetate (0.2 g) were added to the solution and it was heated at 100°C overnight. It was subsequently poured into water and the brown solid obtained was filtered off, washed with water and dried to afford PIP₁. The reaction yields, the inherent viscosities and the elemental analyses for all polyamides and polyimides are listed in *Table 1*.

RESULTS AND DISCUSSION

Scheme 1 outlines the synthetic route applied for the preparation of two new aromatic diamines bearing bulky pendent ether groups. Specifically, 1-chloro-2,4-dinitrobenzene reacted in ethanol 95% with the potassium naphthoxide prepared *in situ* from 1-naphthol and potassium hydroxide to afford DN_1 . Since 1-naphthol has higher acidity than ethanol, a slight excess of 1-naphthol with respect to potassium hydroxide was used to avoid the formation of potassium ethoxide. The catalytic hydrogenation of DN_1 in ethanol 95% yielded DA_1 . Diamine DA_2 was similarly synthesized utilizing biphenyl-4-ol instead of 1-naphthol.

Table 1 Yields, inherent viscosities and elemental analyses of polyamides and polyimides

Polymer	Vield	$\frac{n_{inh}}{(dl g^{-1})}^{a}$	Empirical	Elemental analyses				
	(%)		formula		C (%)	H (%)	N (%)	
PA ₁	97	1.28	$(C_{24}H_{16}N_2O_3)_n$	Calcd Found	75.78 75.55	4.24 4.18	7.36 7.27	
PA ₂	95	1.38	$(C_{26}H_{18}N_2O_3)_n$	Caled Found	76.83 76.54	4.46 4.35	6.89 6.96	
PIP ₁	95	1.17	$(C_{26}H_{12}N_2O_5)_n$	Caled Found	72.22 71.87	2.80 2.71	6.48 6.34	
PIP ₂	94	1.02	$(C_{28}H_{14}N_2O_5)_n$	Caled Found	73.36 73.12	3.08 2.96	6.11 5.97	
PIB ₁	97	1.22	$(C_{33}H_{16}N_2O_6)_n$	Calcd Found	73.88 73.70	3.01 2.94	5.22 5.05	
PIB ₂	96	1.18	$(C_{35}H_{18}N_2O_6)_n$	Calcd Found	74.73 74.54	3.23 3.15	4.98 4.84	

^a Inherent viscosity in DMAc (0.5 g dl⁻¹) at 30°C

Figure 1 FT i.r. spectra of compounds DN_2 and DA_2

Figure 2 ⁻¹H n.m.r. spectrum of compound DA_2 in DMSO-d₆ solution

Figure 3 FT i.r. spectra of polyamide PA_1 as well as of polyimides PIP_1 and PIB_1

A new class of modified polyamides and polyimides were prepared utilizing diamines DA_1 and DA_2 as starting materials (*Scheme 2*). More particularly, these diamines reacted with terephthaloyl chloride by the solution polycondensation method to afford polyamides PA_1 and PA_2 respectively. In addition, the reactions of diamine DA_1 with PMDA and BTDA afforded polyimides PIP_1 and PIB_1 respectively. Similarly polyimides PIP_2 and PIB_2 were prepared by reacting DA_2 with these tetracarboxylic acid dianhydrides. Their intermediate poly(amic acid)s were cyclodehydrated by heating in the presence of acetic anhydride and sodium acetate.

The corresponding unmodified polymers were also synthesized to compare their physical and thermal properties with those of the modified ones. Particularly, polyamide PA (n_{inh} 1.32 dl g⁻¹ in DMAc) was prepared from 1,3-phenylenediamine and terephthaloyl chloride. Finally, polyimides PIP and PIB were synthesized from 1,3-phenylenediamine by reacting with PMDA and BTDA, respectively. Since polyimides PIP and PIB were partially soluble in polar aprotic solvents, the n_{inh} of their intermediate poly(amic acid)s were determined. They were 1.07 and 1.13 dl g⁻¹, respectively, in DMAc.

The monomers were characterized by elemental analyses as well as i.r. and ¹H n.m.r. spectroscopy. *Figure 1* presents typical *FT* i.r. spectra of compounds DN_2 and DA_2 . Both compounds showed an absorption band around 1240 cm⁻¹ associated with an ether bond. Compound DN_2 displayed absorptions at 1522 and 1342 cm⁻¹ assigned to the nitro groups. The lack of these absorptions in DA_2 confirmed the complete hydrogenation of the nitro groups. DA_2 showed new absorption bands at 3422–3342 (N–H stretching) and 1620 cm⁻¹ (N–H deformation).

Figure 2 shows the ¹H n.m.r. spectrum of DA_2 in a DMSO-d₆ solution. It displayed multiplets at 7.60–6.80 (protons of biphenyl segment), 6.72, 6.64 and 6.07 (protons of positions 6, 5 and 3, respectively, of 1,3-phenylenediamine ring) as well as a broad at 4.50 ppm (NH₂). The protons of amino groups were exchangeable with D₂O.

The modified polymers were obtained in 94-97% yields and their n_{inh} values ranged from 1.38 to 1.02 dl g^{-1} . Their characterization was accomplished by i.r., ¹H n.m.r., X-ray, d.t.a., t.m.a., t.g.a. and isothermal gravimetric analysis (i.g.a.).

Figure 3 presents the *FT* i.r. spectra of polyamide PA_1 as well as of polyimides PIP_1 and PIB_1 . PA_1 showed characteristic absorption bands at 3358 (N–H stretching); 1662 (C=O); 1596, 1506 (aromatic); 1526 (N–H deformation); 1390 (naphthyl ring); 1260 (C–N stretching and N–H bending) and 1230 cm⁻¹ (ether bond). PIP_1 and PIB_1 displayed absorptions associated with the imide structure. In the case of PIP_1 , they appeared at 1780, 1726, 1336, 1102 and 724 cm⁻¹. The absorption at 1240 cm⁻¹ was assigned to the ether bonds.

Since all the polymers were soluble at room temperature or upon heating in polar aprotic solvents (see below), their ¹H n.m.r. spectra could be recorded. The ¹H n.m.r. spectra of the polymers were in agreement with the proposed structures. A typical ¹H n.m.r. spectrum of polyamide PA_2 in a DMSO-d₆ solution showed a singlet at 10.38 (NHCO), multiplets centered at 7.80 (aromatic of terephthalic acid segments) and multiplets

Table 2 Bolubinues of polymer.	Table	2	Solubilities	of	pol	ymers
---------------------------------------	-------	---	--------------	----	-----	-------

	Solvents"									
Polymer	DMF	NMP	DMSO	CCl ₃ COOH	H ₂ SO ₄	1.4-Diozane	CH ₃ CN	СН	m-Cresol	
PA ₁	++	++	++	++	++	+	+-	+	÷	
PA	-+-	+	+	+	+	_		-	-	
PIP ₁	+	+	4	* +	- 144		-	+-	-	
PIP	+-	÷-	+-	+-	+	-	-	-	-	
PIB ₁	++	++	++	++	-+-	+-		+	+	
PIB	+-	+	+-	+	+	_		-	-	

^a Solubility: ++, soluble at room temperature; +, soluble in hot solvent; +-, partially soluble; -, insoluble

^b DMF, N,N-dimethylformamide; NMP, N-methylpyrrolidone; DMSO, dimethylsulfoxide; CH. cyclohexanone

Figure 4 Water absorption (%) versus time for polyamides PA_1 , PA_2 and PA

Figure 5 T.m.a. thermograms for both modified and unmodified polymers. Conditions: N_2 flow, 60 cm³ min⁻¹; heating rate, 20°C min⁻¹

at 7.40–6.90 ppm (aromatic of 1,3-phenylenediamine rings and biphenyl moieties).

One of the main objectives of the present investigation was the improvement of the polymer solubility due to their bulky pendent groups. *Table 2* presents the solubilities of modified polymers PA_1 , PIP_1 and PIB_1 as well as of the corresponding unmodified ones. It is seen that the structural modification of polymers enchanced their solubility. Specifically, PA_1 was soluble at room temperature in polar aprotic solvents (DMF, NMP, DMSO) and certain acids (H_2SO_4 , CCl_3COOH) and upon heating in *m*-cresol, 1,4-dioxane and cyclohexanone. In contrast, PA dissolved only in hot polar aprotic solvents and acids. PIB₁ displayed better solubility in most solvents than PIP₁. Note that PIB₁ was readily soluble even at ambient temperature in polar aprotic solvents and certain acids. The modified polymers PA₂, PIP₂ and PIB₂ containing biphenylyl-4oxy pendent groups showed comparable solubilities with the corresponding polymers bearing 1-naphthoxy segments.

The enhanced solubility of modified polymers was in line with their amorphous character which was confirmed from the WAXD. The voluminous ether pendent groups along the polymer backbone was responsible for this behaviour. The optimized geometry for two repeating units of the macromolecule of PA_1 , as calculated by means of CSC ChemDraw Plus Σ Molecular Modelling System, revealed that the bulky side groups increased remarkably the disorder in the chain packing.

The hydrophilicity of polyamides was estimated by measuring their equilibrium water absorption as a function of the time exposed (Figure 4). Polyamides PA, PA_1 and PA_2 showed a water uptake of 4.30, 2.04 and 1.95%, respectively, after 100 h exposure time. The corresponding number of moles of absorbed water per amide equivalent weight for these polyamides was 0.90, 0.21 and 0.20. The number of equilibrium of water absorption was significantly lower for the modified polyamides PA1 and PA2 than for the unmodified one PA. This feature could be attributed to the inter- and intra-molecular hydrogen bonding between the amide and ether groups which competes with the amide-water hydrogen bonds. An analogous behaviour has been observed in polyisophthalamides with phenoxy pendent groups^{8,10}

 T_{g} s and T_{s} s of polymers were determined by the t.m.a. method, using a suitably loaded penetration probe. *Figure 5* shows the t.m.a. traces in N₂ for both modified and unmodified polymers. The T_{g} and T_{s} values were determined from the onset temperatures of transitions and are listed in *Table 3*. No transition was detected up to approximately 350°C for the polyimides PIP₁, PIP₂ and PIP derived from PMDA. In the case of PA and PIB, only T_{g} transition was obtained. It is seen that the modified polymers displayed lower T_{g} than the parent polymers, which conforms with literature data^{8.9}. On Table 3 T.g.a. and t.m.a. data

				T.g.a.						
		In	N ₂		In air				T.m.a.	
Polymer	IDT ^d (C)	<i>PDT^b</i> (C)	PDT_{max}^{c}	$\frac{Yc^d}{(\%)}$	<i>IDT</i> (°C)	<i>PDT</i> (°C)	PDT _{max} (-C)	T_{g}^{c} (C)	$\frac{T_s^{f}}{(C)}$	
PA ₁	350	457	517	62	340	456	533	110	190	
PA_2	359	471	508	70	348	449	513	157	273	
PA	347	450	505	45	333	417	498	238		
PIB ₁	396	547	563	64	380	539	587	172	225	
PIB ₂	394	555	571	64	389	533	595	195	235	
PIB	382	533	600	54	375	502	591	247		
PIP	398	530	557	60	389	548	554			
PIP ₂	404	550	563	59	391	559	577			
PIP	392	521	547	55	373	506	577			

^d Initial decomposition temperature

^b Polymer decomposition temperature

⁶ Maximum polymer decomposition temperature

^d Char yield at 800 C

^e Glass transition temperature

¹ Softening temperature

Figure 6 D.t.a. traces of polyimides PIB_1 , PIB_2 and PIB. Conditions: N₂ flow. 60 cm³ min⁻¹; heating rate, 20 C min⁻¹

Figure 7 T.g.a. thermograms in N_2 and air of polyamide PA_1 and polyimides PIP_1 and PIB_1 . Conditions: gas flow, $60 \text{ cm}^3 \text{ min}^{-1}$; heating rate, $20^{\circ} \text{ C min}^{-1}$

the other hand, the modified polyamides as well as the polyimides of BTDA showed a T_s in the region 190–273 °C.

The thermal behaviour of polymers was also investigated by d.t.a. in N₂. Figure 6 presents typical d.t.a. curves for polyimides PIB₁, PIB₂ and PIB. The modified polyimides exhibited a broad endotherm at 220–240°C associated with their softening. In contrast, the unmodified polyimide did not display any endotherm up to 300°C. The T_s values determined by d.t.a. were in agreement with those of t.m.a. The d.t.a. scans of polymers did not exhibit T_g transitions even when they repeated after heating at 270°C. The limited sensitivity of the utilized high temperature d.t.a. cell contributed to this feature.

The thermal stabilities of polymers was investigated using t.g.a. and i.g.a. Figure 7 shows representative t.g.a. thermograms of polymers PA_1 , PIP_1 and PIB_1 . The initial decomposition temperature (*IDT*), the polymer decomposition temperature (*PDT*), the maximum polymer decomposition temperature (*PDT*), the maximum polymer decomposition temperature (*PDT*_{max}) in both N₂ and air as well as the anaerobic char yield (Y_c) at 800°C for all polymers are summarized in *Table 3*. The *IDT* and *PDT* were determined for the temperature at which 0.5 and 10% weight loss was observed respectively. *PDT*_{max} corresponds to the temperature at which the maximum rate of weight loss occurred.

The modified polymers were more thermally stable than their unmodified counterparts, since their *IDT* and *PDT* in both N₂ and air as well as the anaerobic Y_c at 800°C were higher. Upon comparing the chemical structures of the pendent groups, it is seen that biphenylyl-4-oxy was more stable than 1-phenoxy.

The higher thermal stability of the modified polymers in comparison to that of the analogous unmodified was verified by i.g.a. *Figure 8* shows typical i.g.a. traces for the polymers PA₂, PA, PIP₂, PIP, PIB₂ and PIB at 310°C in static air. After 20 h isothermal ageing, they displayed weight losses of 23.6, 25.6, 15.0, 18.7, 9.6 and 17.1% respectively.

Figure 8 I.g.a. traces at 310 °C in static air of polyamides PA_2 . PA as well as of polyimides PIP_2 . PIP and PIB_2 . PIB

CONCLUSIONS

- 1. A series of modified polyamides and polyimides bearing naphthoxy and biphenylyloxy pendent groups were synthesized from two new aromatic diamines.
- 2. The modified polymers showed an enchanced solubility but lower hydrophilicity than the unmodified polymers.
- 3. The modification of polymers caused a decrease in T_g of 50–128°C. Certain modified polymers displayed T_s s in the range 190–273°C.

 The modified polymers started to lose weight at 350– 404°C in N₂ and were more thermally stable than the unmodified ones.

REFERENCES

- Cassidy, P. E. 'Thermally Stable Polymers', Marcel Dekker, New York, 1980, Chapter 4
- 2 Jadhav, J. Y., Preston, J., Krigbaum, W. R. J. Polym. Sci., Polym. Chem. Edn 1989, 27, 1175
- 3 Lozano, A. E., de Abajo, J., de la Campa, J. G. and Preston, J. Polymer 1994, 35, 1317
- 4 Lozano, A. E., de la Campa, J. G., de Abajo, J. and Preston, J. Polymer 1994, **35**, 872
- 5 Kricheldorf, H. R. and Schwartz, G. Makromol, Chem.; Rapid Commun. 1989, 10, 243
- 6 Korshak, V. V., Rusanov, A. L., Baritov, I., Kazarava, R. D. and Nijazi, F. F. *Faserforsch. Textiltech.* 1978, **92**, 649
- 7 Tsai, T. and Arnold, F. E. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1986, 27(2), 221
- 8 Melendez, A., de la Campa, J. G. and de Abajo, J. *Polymer* 1988, **29**, 1142
- 9 Kakimoto, M. A., Yoneyama, M. and Imai, Y. J. Polym. Sci., Polym. Chem. Edn 1988, 26, 149
- 10 Lozano, A. E., de Abajo, J., de la Campa, J. G. and Preston, J. J. Polym. Sci., Polym. Chem. Edn 1992, 30, 1327
- 11 Mikroyannidis, J. A. Macromolecules. 1995, 28, 5177
- Mikroyannidis, J. A. J. Polym. Sci., Polym. Chem. Edn 1992, 30, 2371
 Dial and the C. Dial and Million and Millio
- 13 Diakoumakos, C. D. and Mikroyannidis, J. A. *Polymer* 1992, 35, 1986
- 14 Diakoumakos, C. D. and Mikroyannidis, J. A. *Eur. Polym. J.* 1995, **31**, 761
- 15 Spiliopoulos, I. K. and Mikroyannidis, J. A. J. Polym. Sci., Polym. Chem. Edn in press
- 16 Spiliopoulos, I. K. and Mikroyannidis, J. A. J. Polym. Sci., Part A: Polym. Chem. Edn in press